

## Design and Analysis of Algorithm

## SWAYAM Prabha Course Code-KCS 503

| PROFESSOR'S NAME |                       | Dr. Upendra Kumar                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |  |
|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| DEPARTMENT       |                       | Computer Science and Engineering                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |  |
| INSTITUTE        |                       | Institute of Engineering And Technology, Lucknow                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |  |
|                  |                       | The basic Outlines of Design and Analysis of Algorithm course is to<br>design new algorithms, prove their correctness, and analyze their<br>asymptotic and absolute runtime and memory demands. This Course<br>helps us to understand the basic techniques for designing<br>algorithms, including the techniques of recursion, divide-and-<br>conquer, greedy, dynamic programming, backtracking etc. |                                                                                  |  |
|                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |  |
| S. No            | Module ID/ Lecture ID |                                                                                                                                                                                                                                                                                                                                                                                                       | Lecture Title/Topic                                                              |  |
| 1                | Lectur                | e 1                                                                                                                                                                                                                                                                                                                                                                                                   | Algorithms, Analyzing Algorithms                                                 |  |
| 2                | Lecture 2             |                                                                                                                                                                                                                                                                                                                                                                                                       | Complexity of Algorithms, Growth of Functions and their Performance Measurements |  |
| 3                | Lectur                | e 3                                                                                                                                                                                                                                                                                                                                                                                                   | Sorting and Order Statistics                                                     |  |
| 4                | Lectur                | e 4                                                                                                                                                                                                                                                                                                                                                                                                   | Quick Sort                                                                       |  |
| 5                | Lectur                | e 5                                                                                                                                                                                                                                                                                                                                                                                                   | Merge Sort                                                                       |  |
| 6                | Lecture 6             |                                                                                                                                                                                                                                                                                                                                                                                                       | Heap Sort                                                                        |  |
| 7                | Lecture 7             |                                                                                                                                                                                                                                                                                                                                                                                                       | Comparison of Sorting Algorithms                                                 |  |
| 8                | Lecture 8             |                                                                                                                                                                                                                                                                                                                                                                                                       | Sorting in Linear Time                                                           |  |
| 9                | Lectur                | e 9                                                                                                                                                                                                                                                                                                                                                                                                   | Red-Black Trees & its Properties                                                 |  |
| 10               | Lecture               | e 10                                                                                                                                                                                                                                                                                                                                                                                                  | Red-Black Tree Insertion                                                         |  |
| 11               | Lecture               | e 11                                                                                                                                                                                                                                                                                                                                                                                                  | Red-Black Tree Deletion                                                          |  |
| 12               | Lecture               | o 12                                                                                                                                                                                                                                                                                                                                                                                                  | B – Tree and its Insertion                                                       |  |

| 13 | Lecture 13 | B –Tree Deletion                                |
|----|------------|-------------------------------------------------|
| 14 |            |                                                 |
| 14 | Lecture 14 | Binomial Heaps & its Properties, Operations     |
| 15 | Lecture 15 | Operations on Binomial Heaps                    |
|    |            |                                                 |
| 16 | Lecture 16 | Fibonacci Heaps & its Properties                |
|    |            |                                                 |
| 17 | Lecture 17 | Operations on Fibonacci Heaps                   |
| 10 |            | Divide and Conquer technique with examples      |
| 18 | Lecture 18 | such as sorting                                 |
| 19 | Losturo 10 | Divide and Conquer technique with examples      |
|    | Lecture 19 | Groody Mothods with avamples such as Ontime     |
| 20 | Lecture 20 | Reliability Allocation, Huffman Codes           |
|    |            | Greedy Methods with examples such as            |
| 21 |            | Fractional Knapsack, Task Scheduling and        |
|    | Lecture 21 | Travelling Salesman                             |
|    |            | Minimum Spanning Tree: Prims & Kruskal          |
| 22 | Lecture 22 | Algorithm                                       |
| 23 | Lecture 23 | Single Source Shortest Path: Diikstra Algorithm |
|    |            |                                                 |
| 24 | Lecture 24 | Shortest Path Algorithm: Bellman Ford           |
|    |            | Dynamic Programming with examples such as       |
| 25 | Lecture 25 | Knapsack Problem- Part 1                        |
|    |            | Dynamic Programming with examples such as       |
| 26 | Lecture 26 | Knapsack Problem- Part 2                        |
| 27 | Lasting 27 | Langest Common Subservenes arehiers. Do it 1    |
|    |            |                                                 |
| 28 | Lecture 28 | Longest Common Subsequence problem- Part 2      |
|    |            |                                                 |
| 29 | Lecture 29 | Floyd Warshall Algorithm: Part 1                |
|    |            |                                                 |
| 30 | Lecture 30 | Floyd Warshall Algorithm: Part 2                |
| 21 | Locture 21 | Matrix Chain Multiplication Problem: Part 1     |
| 51 | Lecture 31 |                                                 |
| 32 | Lecture 32 | Matrix Chain Multiplication Problem: Part 2     |
|    |            |                                                 |
| 33 | Lecture 33 | Backtracking & Graph Coloring, Sum of Subsets   |

| 34 | Lecture 34 | N Queen problem and Hamiltonian Cycles          |
|----|------------|-------------------------------------------------|
|    |            |                                                 |
| 35 | Lecture 35 | Branch and Bound with examples such as TSP      |
|    |            | Branch and Bound with examples such as 0/1      |
| 36 | Lecture 36 | Knapsack                                        |
|    |            |                                                 |
| 37 | Lecture 37 | String Matching: Naïve and Rabin Karp Algorithm |
|    |            |                                                 |
| 38 | Lecture 38 | Knutt Morris Pratt and Boyer Moore Algorithm    |
|    |            |                                                 |
| 39 | Lecture 39 | Theory of NP Completeness                       |
|    |            | Approximation Algorithms & Randomized           |
| 40 | Lecture 40 | Algorithms                                      |
|    |            |                                                 |
| 41 | Lecture 41 | Algebraic Computation & Fast Fourier Transform  |

## **References if Any:**

1. Thomas H. Coreman, Charles E. Leiserson and Ronald L. Rivest, "Introduction to Algorithms", Printice Hall ofIndia.

2. E. Horowitz & S Sahni, "Fundamentals of Computer Algorithms",

3. Aho, Hopcraft, Ullman, "The Design and Analysis of Computer Algorithms" Pearson Education, 2008.

4. LEE "Design & Analysis of Algorithms (POD)", McGraw Hill

5. Richard E.Neapolitan "Foundations of Algorithms" Jones & Bartlett Learning

6. Jon Kleinberg and Éva Tardos, Algorithm Design, Pearson, 2005.

7. Michael T Goodrich and Roberto Tamassia, Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Wiley, 2006.

8. Harry R. Lewis and Larry Denenberg, Data Structures and Their Algorithms, Harper Collins, 1997

9. Robert Sedgewick and Kevin Wayne, Algorithms, fourth edition, Addison Wesley, 2011.

10. Harsh Bhasin,"Algorithm Design and Analysis", First Edition, Oxford University Press.

11. Gilles Brassard and Paul Bratley, Algorithmics: Theory and Practice, Prentice Hall, 1995.